
SHERLOCK SECURITY REVIEW FOR

Prepared for: Cooler
Prepared by: Sherlock
Lead Security Expert: jkoppel
Dates Audited: August 25 - August 28, 2023
Prepared on: September 22, 2023

https://github.com/jkoppel

Introduction
A peer-to-peer lending protocol allowing a borrower and lender to engage infixed-duration, fixed-interest lending. Cooler Loans are lightweight, trustless,independent of price-based liquidation.
ScopeRepository: ohmzeus/CoolerBranch: mainCommit: c6f2bbe1b51cdf3bb4d078875170177a1b8ba2a3
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High4 4
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues

Ignitedethjkoppel
detectivekingmert_erenubermensch

thekmjbanditx0xdeadrxsezzz
1

https://github.com/sherlock-audit/2023-08-cooler/blob/main/README.md#audit-scope
https://github.com/Ignite124
https://github.com/0xdeth
https://github.com/jkoppel
https://github.com/detectiveking123
https://github.com/merteren1234
https://github.com/Sicmundos
https://github.com/midori-fuse
https://github.com/banditx0x
https://github.com/deadrosesxyz

evilakelaklauscastle_chainmahdikarimiChinmaypengunxAlismx0xMAKEOUTHILLNegin0xbepresentharisnabeelnmirchev8ni8marelibratusDelvir0

KowMlomeBugHunter101VagnerHamajahcatsBreejesandyjames_wuubl4nkpep7siupradevauditorp-tsanev0xmurali7

B353NKral01SilvermistADMtvdung94SanketKogekarcarrotsmuggler0xMoshYanevjoviSBSecurityHChang26hals

2

https://github.com/evilakela
https://github.com/klau5dev
https://github.com/frankcastleauditor
https://github.com/mahdikarimi81
https://github.com/chinmay-farkya
https://github.com/dot-pengun
https://github.com/xAlismx
https://github.com/MAKEOUTHILL6
https://github.com/Negin-Az
https://github.com/0xbepresent
https://github.com/Haris-Nabeel
https://github.com/NicolaMirchev
https://github.com/NishithPat
https://github.com/imherefortech
https://github.com/Delvir0
https://github.com/Kallya
https://github.com/MiniGlome
https://github.com/Dlangman
https://github.com/VagnerAndrei26
https://github.com/hama-tech
https://github.com/demelew
https://github.com/0xcats
https://github.com/Breeje16
https://github.com/0xSandyy
https://github.com/brown-qs
https://github.com/alireza-razavi
https://github.com/hungdoo
https://github.com/radevauditor
https://github.com/PlamenTSV
https://github.com/Potlimuralimohan
https://github.com/B353N
https://github.com/Abelaby
https://github.com/MariinaKP
https://github.com/0xADM
https://github.com/sota1994
https://github.com/sanket-kogekar
https://github.com/carrotsmuggler2
https://github.com/M0sharaff
https://github.com/ERko1709
https://github.com/joaovwfreire
https://github.com/SBSecurity
https://github.com/Henrychang26
https://github.com/HalaNHasan

Issue H-1: Can steal gOhm by calling
Clearinghouse.claimDefaultedon loansnotmadebyClear-
inghouse
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/28
Found bydetectiveking, jkoppel, mert_eren
Clearinghouse.claimDefaulted assumes that all loans passed in were originated bythe Clearinghouse. However, nothing guarantees that. An attacker can wreakhavoc by calling it with a mixture of Clearinghouse-originated and external loans. Inparticular, they can inflate the computed totalCollateral recovered to stealexcess gOhm from defaulted loans.
Vulnerability Detail1. Alice creates a Cooler. 9 times, she calls requestLoan (not through theClearinghouse) to request a loan of 0.000001 DAI collateralized by 2 gOhm.For each loan, she then calls clearLoan and loans the 0.000001 DAI to herself.2. One week later, Bob calls Clearinghouse.lendToCooler and takes a loan for3000 DAI collateralized by 1 gOHM3. Alice defaults on the loans she made to herself and waits 7 days4. Bob defaults on his loan5. Alice calls Clearinghouse.claimDefaulted, passing in both her loans to herselfand Bob's loan from the Clearinghouse. Clearinghouse.claimDefaulted calls

Cooler.claimDefaulted on each, returning 18 gOhm to Alice and 1 gOhm to theClearinghouse.6. For each of Alice's loan, the keeper reward is incremented by the max awardof 0.1 gOhm. For Bob's loan, the keeper reward is incremented by somewherebetween 0 and 0.05 gOhm, depending on how much time has elapsed sinceBob's loan defaulted.7. The keeper reward is transferred to Alice. Alice's reward will be between 0.9and 0.95 gOhm, but it should be between 0 and 0.05 gOhm. The contractshould recover between 0.95 and 1 gOhm, but it only recovers between 0.05and 0.1 gOhm. Alice has effectively stolen 0.9 gOhm from the contractThe attack as stated above can steal at most 5% of the collateral. Note that Alice
can get this even without waiting 7 days from loan expiry time. It further requiresthe Clearinghouse have some extra gOhm around, as it will burn totalCollateral -

3

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/28

keeperRewards. This can happen if the treasury or someone sends it some gOhm forsome reason, or by calling claimDefault as in #3 .However, #5 extends this attack so that Alice can steal 100% of the collateral, evenif the Clearinghouse has no extra gOhm lying around.For added fun, note that, when setting up her loans to herself, Alice can set theloan duration to 0 seconds. So this only requires setting up 1 block in advance.
ImpactAnyone can steal collateral from defaulted loans.
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L191Notice the lack of any checks that the loan's lender is the Clearingouse
function claimDefaulted(address[] calldata coolers_, uint256[] calldata loans_)

external {,!

uint256 loans = loans_.length;
if (loans != coolers_.length) revert LengthDiscrepancy();

uint256 totalDebt;
uint256 totalInterest;
uint256 totalCollateral;
uint256 keeperRewards;
for (uint256 i=0; i < loans;) {

// Validate that cooler was deployed by the trusted factory.
if (!factory.created(coolers_[i])) revert OnlyFromFactory();

// Claim defaults and update cached metrics.
(uint256 debt, uint256 collateral, uint256 elapsed) =

Cooler(coolers_[i]).claimDefaulted(loans_[i]);,!

keeperRewards is incremented for every loan.
// Cap rewards to 5% of the collateral to avoid OHM holder's dillution.
uint256 maxAuctionReward = collateral * 5e16 / 1e18;
// Cap rewards to avoid exorbitant amounts.
uint256 maxReward = (maxAuctionReward < MAX_REWARD)

? maxAuctionReward
: MAX_REWARD;

// Calculate rewards based on the elapsed time since default.
keeperRewards = (elapsed < 7 days)

? keeperRewards + maxReward * elapsed / 7 days

4

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L191
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L191

: keeperRewards + maxReward;
}

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L318
Cooler.claimDefaulted can be called by anyone.

function claimDefaulted(uint256 loanID_) external returns (uint256, uint256,
uint256) {,!

Loan memory loan = loans[loanID_];
delete loans[loanID_];

// Hey look, no checks on sender
}

Tool usedManual Review
RecommendationCheck that the Clearinghouse is the originator of all loans passed to claimDefaulted
Discussion
0xRusowsky• https://github.com/ohmzeus/Cooler/pull/48
jkoppelNote on this:The link to #3 is meant to be a link to #46The link to #5 is meant to be a link to #115In the past, when I linked to issues in my private judging repository, Sherlock wouldproperly update them upon submission. Now it just links them to whatever issue inthe public judging repo has the same number.
jkoppelFix confirmed.

5

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L318
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L318
https://github.com/ohmzeus/Cooler/pull/48

Issue H-2: At claimDefaulted, the lender may not receive
the token because theUnclaimed token is not processed
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/119
Found by0xMAKEOUTHILL, Chinmay, Negin, banditx0x, deadrxsezzz, jkoppel, klaus,mahdikarimi, pengun, xAlismx
claimDefaulted does not handle loan.unclaimed . This preventing the lender fromreceiving the debt repayment.
Vulnerability Detail

function claimDefaulted(uint256 loanID_) external returns (uint256, uint256,
uint256) {,!

Loan memory loan = loans[loanID_];
delete loans[loanID_];

Loan data is deletead in claimDefaulted function. loan.unclaimed is not checkedbefore data deletead. So, if claimDefaulted is called while there are unclaimedtokens, the lender will not be able to get the unclaimed tokens.
ImpactLender cannot get unclaimed token.
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Cooler.sol#L318-L320
Tool usedManual Review
RecommendationProcess unclaimed tokens before deleting loan data.
function claimDefaulted(uint256 loanID_) external returns (uint256, uint256,

uint256) {,!

+ claimRepaid(loanID_)

6

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/119
https://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Cooler.sol#L318-L320
https://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Cooler.sol#L318-L320

Loan memory loan = loans[loanID_];
delete loans[loanID_];

Discussion
0xRusowsky• fix: https://github.com/ohmzeus/Cooler/pull/54• https://github.com/ohmzeus/Cooler/pull/47
jkoppelFix approved.

7

https://github.com/ohmzeus/Cooler/pull/54
https://github.com/ohmzeus/Cooler/pull/47

Issue H-3: Clearinghouse.sol#claimDefaulted()
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/176
Found byIgnite, deth Clearinghouse doesn't approve the MINTR to handle tokens in his name,which bricks the entire function.
Vulnerability DetailInside claimDefaulted on the last line we call MINTR.burnOhm which in turn callsOHM.burnFrom. The docs for MINTR.burnFrom state: "Burn OHM from an address.Must have approval.". We can confirm that this is the case when looking at OHMsource code and it's burnFrom. I found 2 OHM tokens that are currently deployed onmainnet, so I'm linking both their addresses: https://etherscan.io/token/0x383518188c0c6d7730d91b2c03a03c837814a899#code, https://etherscan.io/token/0x64aa3364f17a4d01c6f1751fd97c2bd3d7e7f1d5#code. Both addresses use the same
burnFrom logic and in both cases they require an allowance. Nowhere in thecontract do we approve the MINTR to handle OHM tokens in the name of
Clearinghouse, in fact OHM isn't even specified in Clearinghouse.Side note: The test testFuzz_claimDefaulted succeeds, because MockOhm is writtenincorrectly. When burnFrom gets called MockOhm calls the inherited _burn function,which burns tokens from msg.sender. The mock doesn't represent how the real
OHM.burnFrom works.
Impact
Claimdefault will always revert.
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Clearinghouse.sol#L244
Tool usedManual Review
RecommendationAdd a variable ohm which will be the OHM address and approve the necessary tokensto the MINTR before calling MINTR.burnOhm.

8

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/176
https://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Clearinghouse.sol#L244
https://github.com/OlympusDAO/olympus-v3/blob/19236eb1c02464df8fb79c7b59b7195d7511b338/src/modules/MINTR/OlympusMinter.sol#L50-L61
https://docs.olympusdao.finance/main/technical/contract-docs/modules/MINTR/OlympusMinter/#burnohm
https://etherscan.io/token/0x383518188c0c6d7730d91b2c03a03c837814a899#code
https://etherscan.io/token/0x383518188c0c6d7730d91b2c03a03c837814a899#code
https://etherscan.io/token/0x64aa3364f17a4d01c6f1751fd97c2bd3d7e7f1d5#code
https://etherscan.io/token/0x64aa3364f17a4d01c6f1751fd97c2bd3d7e7f1d5#code
https://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Clearinghouse.sol#L244
https://github.com/sherlock-audit/2023-08-cooler/blob/6d34cd12a2a15d2c92307d44782d6eae1474ab25/Cooler/src/Clearinghouse.sol#L244

Discussion
jkoppelSeems real
0xRusowskyConfirmed, but disagree with the severity. Defaults could still happen via the Coolercontracts and OHM could be burned ad-hoc by the DAO.
0xRusowskyAfter discussing it internally, we don't mind if it's labeled as high or medium causewe would need to deploy a new policy (so it would require some extra work on ourend)
0xRusowsky• https://github.com/ohmzeus/Cooler/pull/52
jkoppelFix approved.

9

https://github.com/ohmzeus/Cooler/pull/52

Issue H-4: isCoolerCallback can be bypassed
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/187
Found by0xbepresent, BugHunter101, Delvir0, Hama, Ignite, Kow, Mlome, Vagner, banditx0x,castle_chain, deadrxsezzz, detectiveking, evilakela, harisnabeel, jah, klaus, libratus,mert_eren, ni8mare, nmirchev8, ubermenschThe lender can bypass CoolerCallback.isCoolerCallback() validation withoutimplements the CoolerCallback abstract.In the provided example, this may force the loan to default.
Vulnerability DetailThe CoolerCallback.isCoolerCallback() is intended to ensure that the lenderimplements the CoolerCallback abstract at line 241 when the parameter
isCallback_ is true.https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L233-L275However, this function doesn't provide any protection. The lender can bypass thischeck without implementing the CoolerCallback abstract by calling the
Cooler.clearRequest() function using a contract that implements the
isCoolerCallback() function and returns a true value.For example:By being the loan.lender with implement only onDefault() function, this will causethe repayLoan() and rollLoan() methods to fail due to revert at onRepay() and
onRoll() function. The borrower cannot repay and the loan will be defaulted.After the loan default, the attacker can execute claimDefault() to claim thecollateral.Furthermore, there is another method that allows lenders to bypass the
CoolerCallback.isCoolerCallback() function which is loan ownership transfer.Normally, the lender who implements the CoolerCallback abstract may call the
Cooler.clearRequest() with the _isCoolerCallback parameter set to true toexecute logic when a loan is repaid, rolled, or defaulted.But the lender needs to change the owner of the loan, so they call the
approveTransfer() and transferOwnership() functions to the contract that doesn'timplement the CoolerCallback abstract (or implement only onDefault() function toforce the loan default), but the loan.callback flag is still set to true.

10

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/187
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L233-L275
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L233-L275

Thus, this breaks the business logic since the three callback functions don't needto be implemented when the isCoolerCallback() is set to true according to the devnote in the CoolerCallback abstract below:/// @notice Allows for debt issuers to execute logic when a loan is repaid,rolled, or defaulted. /// @dev The three callback functions must beimplemented if isCoolerCallback() is set to true.
Impact1. The lender forced the Loan become default to get the collateral token, ownerlost the collateral token.2. Bypass the isCoolerCallback validation.
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L241https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L338-L343https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L347-L354
Tool usedManual Review
RecommendationOnly allowing callbacks from the protocol-trusted address (eg., Clearinghousecontract).Disable the transfer owner of the loan when the loan.callback is set to true.
Discussion
Oot2kDuplicate of 30
Oot2kReorder issues
0xRusowsky• https://github.com/ohmzeus/Cooler/pull/51

11

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L241
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L241
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L338-L343
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L338-L343
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L347-L354
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L347-L354
https://github.com/ohmzeus/Cooler/pull/51

• https://github.com/ohmzeus/Cooler/pull/57
MLON33From Cooler on Discord: “We’re gonna leave this issue 187 untouched.”

12

https://github.com/ohmzeus/Cooler/pull/57

IssueM-1: emergency_shutdown role isnotenough foremer-
gency shutdown.
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/1
Found bythekmj, ubermenschThere are two protocol roles, emergency_shutdown and cooler_overseer. The
emergency_shutdown should have the ability to shutdown the Clearinghouse.However, in the current contract, emergency_shutdown role does not have saidability. An address will need both emergency_shutdown and cooler_overseer toperform said action.We have also confirmed with the protocol team that the two roles will be held bytwo different multisigs, with the shutdown multisig having a lower threshold andmore holders. Thereby governance will not be able to act as quickly to emergenciesthan expected.
Vulnerability DetailLet's examine the function emergencyShutdown():
function emergencyShutdown() external onlyRole("emergency_shutdown") {

active = false;

// If necessary, defund sDAI.
uint256 sdaiBalance = sdai.balanceOf(address(this));
if (sdaiBalance != 0) defund(sdai, sdaiBalance);

// If necessary, defund DAI.
uint256 daiBalance = dai.balanceOf(address(this));
if (daiBalance != 0) defund(dai, daiBalance);

emit Deactivated();
}

This has the modifier onlyRole("emergency_shutdown"). However, this also callsfunction defund(), which has the modifier onlyRole("cooler_overseer")
function defund(ERC20 token_, uint256 amount_) public

onlyRole("cooler_overseer") {,!

Therefore, the role emergency_shutdown will not have the ability to shutdown theprotocol, unless it also has the overseer role.
13

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/1

Proof of conceptTo get a coded PoC, make the following modifications to the test case:• In Clearinghouse.t.sol, comment out line 125 (so that overseer only has
emergency_shutdown role) https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/test/Clearinghouse.t.sol#L125

//rolesAdmin.grantRole("cooler_overseer", overseer);
rolesAdmin.grantRole("emergency_shutdown", overseer);

• Run the following test command (to just run a single test
test_emergencyShutdown()):

forge test --match-test test_emergencyShutdown

The test will fail with the ROLES_RequireRole() error.
Impact
emergency_shutdown role cannot emergency shutdown the protocol
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L339 https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L360-L372
Tool usedManual Review, Foundry/Forge
RecommendationThere are two ways to mitigate this issue:• Separate the logic for emergency shutdown and defunding. i.e. do not defundwhen emergency shutdown, but rather defund separately after shutdown.• Move the defunding logic to a separate internal function, so that emergencyshutdown function can directly call defunding without going through amodifier.
Discussion
sherlock-admin

14

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/test/Clearinghouse.t.sol#L125
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/test/Clearinghouse.t.sol#L125
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L339
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L339
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L360-L372
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L360-L372

1 comment(s) were left on this issue during the judging contest.
0xyPhilic commented:invalid because it can be considered low as roles can be given again andthere is no loss of funds
0xRusowskyfair point, but it still should be low as a user can have several roles
Oot2kI have to disagree, a user can indeed have several roles, but that can not beensured/ if there are two separate roles they should be considered separate.
ohmzeusFix: https://github.com/ohmzeus/Cooler/pull/50
jkoppelFix confirmed.

15

https://github.com/ohmzeus/Cooler/pull/50

IssueM-2: Lender is able to steal borrowers collateral by
calling rollLoan with unfavourable terms on behalf of the
borrower.
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/26
Found by0xMosh, 0xbepresent, 0xmurali7, ADM, B353N, Breeje, BugHunter101, Chinmay,Delvir0, HChang26, Kow, Kral01, Mlome, SBSecurity, SanketKogekar, Silvermist,Yanev, banditx0x, carrotsmuggler, castle_chain, cats, deadrxsezzz, detectiveking,deth, evilakela, hals, jovi, libratus, mahdikarimi, ni8mare, nmirchev8, p-tsanev,pengun, sandy, tvdung94 A Lender is able to call provideNewTermsForRoll withwhatever terms they want and then can call rollLoan on behalf of the borrowerforcing them to roll the loan with the terms they provided. They can abuse this tomake the loan so unfavourable for the borrower to repay that they must forfeit theircollateral to the lender.
Vulnerability Detail
Say a user has 100 collateral tokens valued at $1,500 and they wish to borrow 1,000debt tokens valued at $1,000 they would would call: (values have simplified forease of math)
requestLoan("1,000 debt tokens", "5% interest", "10 loan tokens for each

collateral", "1 year"),!

If a lender then clears the request the borrower would expect to have 1 year topayback 1,050 debt tokens to be able to receive their collateral back.However a lender is able to call provideNewTermsForRoll with whatever terms theywish: i.e.
provideNewTermsForRoll("loanID", "10000000% interest", "1000 loan tokens for

each collateral" , "1 year"),!

They can then follow this up with a call to rollLoan(loanID): During the rollLoanfunction the interest is recalculated using:
function interestFor(uint256 amount_, uint256 rate_, uint256 duration_) public

pure returns (uint256) {,!

uint256 interest = (rate_ * duration_) / 365 days;
return (amount_ * interest) / DECIMALS_INTEREST;

}

16

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/26

As rate_ & duration_ are controllable by the borrower when they callprovideNewTermsForRoll they can input a large number that the amount returned ismuch larger then the value of the collateral. i.e. input a rate_ of amount * 3 andduration of 365 days so that the interestFor returns 3,000.This amount gets added to the existing loan.amount and would make it too costlyto ever repay as the borrower would have to spend more then the collateral isworth to get it back. i.e. borrower now would now need to send 4,050 debt tokensto receive their $1,500 worth of collateral back instead of the expected 1050.The extra amount should result in more collateral needing to be sent however it iscalculated using loan.request.loanToCollateral which is also controlled by thelender when they call provideNewTermsForRoll, allowing them to input a value thatwill result in newCollateralFor returning 0 and no new collateral needing to be sent.
function newCollateralFor(uint256 loanID_) public view returns (uint256) {

Loan memory loan = loans[loanID_];
// Accounts for all outstanding debt (borrowed amount + interest).
uint256 neededCollateral = collateralFor(loan.amount,
loan.request.loanToCollateral);,!

// Lender can force neededCollateral to always be less than loan.collateral

return neededCollateral > loan.collateral ? neededCollateral -
loan.collateral : 0;,!

}

As a result a borrower who was expecting to have repay 1050 tokens to get backtheir collateral may now need to spend many multiples more of that and will just beforced to just forfeit their collateral to the lender.
ImpactBorrower will be forced to payback the loan at unfavourable terms or forfeit theircollateral.
Code SnippetCooler.sol#L192-L217 Cooler.sol#L282-L300
Tool usedManual Review
RecommendationAdd a check restricting rollLoan to only be callable by the owner. i.e.:

17

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L203
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L192-L217
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L282-L300

function rollLoan(uint256 loanID_) external {
Loan memory loan = loans[loanID_];

if (msg.sender != owner()) revert OnlyApproved();

Note: unrelated but rollLoan is also missing its event should add:
factory().newEvent(reqID_, CoolerFactory.Events.RollLoan, 0);

Discussion
jkoppelWhether this is medium or high depends on how likely borrowers are to makemassively over-collateralized loans
0xRusowskyimo a Medium
Oot2kescalate split frontrunning and access control into own issues
sherlock-admin2escalate split frontrunning and access control into own issuesYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.
0xRusowsky• fix: https://github.com/ohmzeus/Cooler/pull/54• https://github.com/ohmzeus/Cooler/pull/60• https://github.com/ohmzeus/Cooler/pull/61
Oot2kFollowing issues are not duplicates of 26 and should be grouped together andtreaded as another issue: 16 (https://github.com/sherlock-audit/2023-08-cooler-judging/issues/16) 18 (https://github.com/sherlock-audit/2023-08-cooler-judging/issues/18) 72 (https://github.com/sherlock-audit/2023-08-cooler-judging/issues/72)99 (https://github.com/sherlock-audit/2023-08-cooler-judging/issues/99) 130(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/130) 137

18

https://github.com/ohmzeus/Cooler/pull/54
https://github.com/ohmzeus/Cooler/pull/60
https://github.com/ohmzeus/Cooler/pull/61
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/16
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/16
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/18
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/18
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/72
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/99
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/130

(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/137) 150(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/150) 204(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/204) 221(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/221) 243(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/243) 271(https://github.com/sherlock-audit/2023-08-cooler-judging/issues/271)226 -> Invalid
Oot2kAddition: 226 shows attack path and root cause, mentions tokens that are notsupported -> sherlock has to decide if valid/invalid 231 is not duplicate of this issueand should be grouped with the other ones mentioned above
hrishibhatResult: Medium Has duplicates The respective set of issues has been separated
sherlock-admin2Escalations have been resolved successfully!Escalation status:• Oot2k: accepted
jkoppelFix confirmed. Sponsor agreed to accept some economic concerns with the fix, butno security concerns were identified.

19

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/137
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/150
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/204
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/221
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/243
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/271
https://github.com/sherlock-audit/2023-08-cooler-judging/issues/26/#issuecomment-1717154911

Issue M-3: gOhm stuck forever if call claimDefaulted on
Cooler directly
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/46
Found bycastle_chain, detectiveking, evilakela, jkoppelAnyone can call Cooler.claimDefaulted. If this is done for a loan owned by theClearinghouse, the gOhm is sent to the Clearinghouse, but there is no way torecover or burn it.
Vulnerability Detail1. Bob calls Clearinghouse.lendToCooler to make a loan collateralized by 1000gOhm.2. Bob defaults on the loan3. Immediately after default, Eve calls Cooler.claimDefaulted on Bob's loan.4. The gOhm is transferred to the Clearinghouse5. There is no way to burn or transfer it. (In fact, defund() can be used to transferliterally any token except gOhm back to the treasury.)However, the gOhm can now be stolen using the exploit in #1, potentially in thesame transaction as when Eve called Cooler.claimDefaulted().
ImpactAnyone can very easily make all defaulted gOhm get stuck forever.
Code Snippet
Cooler.claimDefaulted sends the collateral to the lender, calls onDefaulthttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L325
Clearinghouse.onDefault does nothinghttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L265Although Clearinghouse.defund() can be used to send any other token back to thetreasury, it cannot do so for gOhm

20

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/46
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L325
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L325
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L265
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L265

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L340
Tool usedManual Review
RecommendationUnsure. Perhaps add a flag disabling claiming by anyone other than loan.lender?Or just allow defund() to be called on gOhm?
Discussion
jkoppelThis is not a duplicate of #28. #28 involves Clearinghouse.claimDefaulted, but thisinvolves Cooler.claimDefaulted.
Oot2kNot a duplicate
0xRusowskyDespite it is not a duplicate, since gOHM would be stuck in CH instead of the beingOHM burn. It wouldn't be a big deal (we could ammend the calculations based onthat) because it doesn't have any operational/economical impact as long as thatsupply is removed from the backing calculations.On top of that, there is an economical incentive to call it from the CH, as the calleris rewarded.Disagree with severity, imo at max it should be a medium.Will think about how to deal with it.
0xRusowskywe will finally add a permissionless burn function despite this logic is unlikely tohappen
0xRusowsky• https://github.com/ohmzeus/Cooler/pull/57
jkoppelFix approved.

21

https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L340
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Clearinghouse.sol#L340
https://github.com/ohmzeus/Cooler/pull/57

Issue M-4: Lender can front-run rollLoan and call
provideNewTermsForRollwith unfavorable terms
Source: https://github.com/sherlock-audit/2023-08-cooler-judging/issues/243
Found by0xbepresent, Breeje, banditx0x, cats, deadrxsezzz, detectiveking, evilakela,harisnabeel, james_wu, pep7siup, radevauditor, sandy, ubl4nk Lender can front-run
rollLoan and result in borrower accepting unfavorable terms.
Vulnerability DetailAfter a loan is created, the lender can provide new loan terms via
provideNewTermsForRoll. If they are reasonable, the user can then accept them.However this opens up a risky scenario:1. User A borrows from lender B2. Lender B proposes new suitable terms3. User A sees them and calls rollLoan to accept them4. Lender B is waiting for this and sees the pending transaction in the mempool5. Lender B front-runs user A's transaction and makes a new call to

provideNewTermsForRoll will an extremely high interest rate6. User A's transaction now executes and they've accepted unfavorable termswith extremely high interest rate
ImpactUser may get mislead in to accepting unfavorable terms and overpaying interest
Code Snippethttps://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L192 https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L282
Tool usedManual Review

22

https://github.com/sherlock-audit/2023-08-cooler-judging/issues/243
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L192
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L192
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L282
https://github.com/sherlock-audit/2023-08-cooler/blob/main/Cooler/src/Cooler.sol#L282

RecommendationWhen calling rollLoan let the user pass a parameter consisting of the max interestrate they are willing to accept to prevent from such incidents.
Discussion
0xRusowsky• https://github.com/ohmzeus/Cooler/pull/63
jkoppelThis is moot because rollLoan no longer exists.
MLON33From @0xRusowsky: Cooler says the fix for this issue has been validated by@jkoppel. The protocol team acknowledges this issue: “...he (@jkoppel) validated itafterwards in discord and another issue (#119).”

23

https://github.com/ohmzeus/Cooler/pull/63

	Introduction
	Scope
	Findings
	Issues found
	Issues not fixed or acknowledged
	Security experts who found valid issues

	Issue H-1: Can steal gOhm by calling Clearinghouse.claimDefaulted on loans not made by Clearinghouse
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-2: At claimDefaulted, the lender may not receive the token because the Unclaimed token is not processed
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-3: Clearinghouse.sol#claimDefaulted()
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue H-4: isCoolerCallback can be bypassed
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-1: emergency_shutdown role is not enough for emergency shutdown.
	Found by
	Vulnerability Detail
	Proof of concept

	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-2: Lender is able to steal borrowers collateral by calling rollLoan with unfavourable terms on behalf of the borrower.
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-3: gOhm stuck forever if call claimDefaulted on Cooler directly
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

	Issue M-4: Lender can front-run rollLoan and call provideNewTermsForRoll with unfavorable terms
	Found by
	Vulnerability Detail
	Impact
	Code Snippet
	Tool used
	Recommendation
	Discussion

