
Audit
Olympus DAO OFT

Presented by:

OtterSec contact@osec.io

Youngjoo Lee youngjoo.lee@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:youngjoo.lee@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-OMP-ADV-00 [high] | Invalid Message Replay Design . 6

05 General Findings 7
OS-OMP-SUG-00 | Ambiguous Offchain Counter Design . 8
OS-OMP-SUG-01 | Remove Dead Code . 9
OS-OMP-SUG-02 | Gas Optimization . 10
OS-OMP-SUG-03 | Missing Initialization Check . 12

Appendices

A Vulnerability Rating Scale 13

B Procedure 14

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 14

01 | Executive Summary

Overview
Olympus DAO engaged OtterSec to perform an assessment of the CrossChainBridge contract. This
assessment was conducted between March 13th and March 17th, 2023. For more information on our
auditing methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 5 findings total.

Specifically, we have identified an issue where the incorrect call method for _receiveMessage()may
result in a denial of service attack (OS-OMP-ADV-00).

In addition, we have provided recommendations to address the risk of message blocking (OS-OMP-SUG-
00), enhance code clarity by removing unnecessary functions and variables (OS-OMP-SUG-01), optimize
gas usage for greater efficiency (OS-OMP-SUG-02), and implement an address check to prevent unintended
behaviour (OS-OMP-SUG-03).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 14

02 | Scope
The source codewasdelivered to us in a git repository at github.com/OlympusDAO/bophades/tree/xchain/.
This audit was performed against commit 35afdee.

A brief description of the programs is as follows.

Name Description

CrossChainBridge CrossChainBridge enables the transfer and reception of OHM tokens across multi-
ple blockchains. The systembuilds on top of LayerZero’s Non-Blocking App, which
allows for the replay of messages in case the processing for one fails.

More specifically, if a message throws an error, the contract will catch and store
the message for reprocessing later.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 14

https://github.com/OlympusDAO/bophades/tree/xchain/
https://github.com/OlympusDAO/bophades/commit/35afdeeb70ec8c644f4913896d9dea3fc72c21a3

03 | Findings
Overall, we reported 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 0
High 1

Medium 0
Low 0

Informational 4

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 14

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-OMP-ADV-00 High Resolved Replayed messages directly call _receiveMessage(),
causing it to revert and become impossible to replay failed
messages.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 14

Olympus DAO OFT Audit 04 | Vulnerabilities

OS-OMP-ADV-00 [high] | Invalid Message Replay Design

Description

Whenmessages are replayed, there’s a direct internal call to _receiveMessage.

src/policies/CrossChainBridge.sol SOLIDITY

// Execute the message. revert if it fails again
receiveMessage(srcChainId, srcAddress_, nonce_, payload_);

emit RetryMessageSuccess(srcChainId_, srcAddress_, nonce_,
payloadHash);↪→

However, this code performs an access control check on the sender, which will cause the invocation to
abort.

src/policies/CrossChainBridge.sol SOLIDITY

// Needed to restrict access to low-level call from lzReceive
if (msg.sender != address(this)) revert Bridge_InvalidCaller();

As a result, the replay feature does not work. Messages that failed the initial invocation would lead to
permanently locking up OHM tokens in the contract.

Remediation

Considermirroring the LayerZero endpoint, which performs an external call to properly setmsg.sender.

Endpoint.sol SOLIDITY

ILayerZeroReceiver(dstAddress).lzReceive(_srcChainId, _srcAddress,
nonce, _payload);↪→

emit PayloadCleared(_srcChainId, _srcAddress, nonce, dstAddress);

Patch

Fixed in #120.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 14

https://github.com/OlympusDAO/bophades/pull/120

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-OMP-SUG-00 To prevent transaction reverts, avoid enabling counterEnabled onmore than
one chain.

OS-OMP-SUG-01 Consider removing dead code from the contract.

OS-OMP-SUG-02 Suggestions for possible gas optimizations.

OS-OMP-SUG-03 Failure to check for address initialization in isTrustedRemotemay lead to unin-
tended behaviour.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 14

Olympus DAO OFT Audit 05 | General Findings

OS-OMP-SUG-00 | Ambiguous Offchain Counter Design

Description

src/policies/CrossChainBridge.sol SOLIDITY

if (counterEnabled) offchainOhmCounter -= amount;

MINTR.increaseMintApproval(address(this), amount);
MINTR.mintOhm(to, amount);

The counterEnabled feature is only safe if

1. OHM is only minted outside of CrossChainBridge on exactly one chain, presumably mainnet.

2. The counter is only enabled on that chain.

Otherwise, unaccounted-for OHM could underflow the counter, therefore, impossible to recover bridged
OHM.

Remediation

Currently, the comment is ambiguous. Consider explicitly documenting this behaviour.

src/policies/CrossChainBridge.sol SOLIDITY

/// @notice Flag for if offchain OHM counter is enabled or not
bool public counterEnabled; // NOTE: Currently only used on mainnet

Patch

Fixed in #120.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 14

https://github.com/OlympusDAO/bophades/pull/120

Olympus DAO OFT Audit 05 | General Findings

OS-OMP-SUG-01 | Remove Dead Code

Description

These two internal functions are not used within the contract.

src/policies/CrossChainBridge.sol SOLIDITY

function _checkGasLimit(

src/policies/CrossChainBridge.sol SOLIDITY

function _getGasLimit(bytes memory adapterParams_)

Similarly, setMinDstGas() is designed to determine theminimum amount of gas required to verify
the gas limit. However, since _checkGasLimit is not being used, both the function and the related
storage are unnecessary.

src/policies/CrossChainBridge.sol SOLIDITY

mapping(uint16 => mapping(uint16 => uint256)) public minDstGasLookup;

src/policies/CrossChainBridge.sol SOLIDITY

function setMinDstGas(

This constant is also not used anywhere.

src/policies/CrossChainBridge.sol SOLIDITY

/// @notice LZ endpoint packet type
uint16 public constant PT_SEND = 0;

Remediation

Remove unnecessary contract code.

Patch

Fixed in #120.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 14

https://github.com/OlympusDAO/bophades/pull/120

Olympus DAO OFT Audit 05 | General Findings

OS-OMP-SUG-02 | Gas Optimization

Description

src/policies/CrossChainBridge.sol SOLIDITY

permissions[1] = Permissions(MINTR_KEYCODE, MINTR.burnOhm.selector);
permissions[2] = Permissions(MINTR_KEYCODE,

MINTR.increaseMintApproval.selector);↪→

permissions[3] = Permissions(MINTR_KEYCODE,
MINTR.decreaseMintApproval.selector);↪→

The MINTR.decreaseMintApproval permission is not being used anywhere, therefore it is unnec-
essary to request it.

Remediation

Remove the code that requests the MINTR.decreaseMintApproval permission.

Description

src/policies/CrossChainBridge.sol SOLIDITY

function getTrustedRemoteAddress(uint16 remoteChainId_) external view
returns (bytes memory) {↪→

bytes memory path = trustedRemoteLookup[remoteChainId_];
if (path.length == 0) revert Bridge_NoTrustedPath();

// The last 20 bytes should be address(this)
return path.slice(0, path.length - 20);

If path.length equals zero, the expression path.length - 20 will be reverted, rendering the
length check unnecessary unless it is needed to explain an error in case path.length is zero.

Remediation

Remove the length check.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 14

Olympus DAO OFT Audit 05 | General Findings

Description

src/policies/CrossChainBridge.sol SOLIDITY

bytes calldata adapterParams_
) external view returns (uint256 nativeFee, uint256 zroFee) {

// Mock the payload for sendOhm()
bytes memory payload = abi.encode(to_, amount_);
return lzEndpoint.estimateFees(dstChainId_, address(this), payload,

false, adapterParams_);↪→

src/policies/CrossChainBridge.sol SOLIDITY

sendMessage(dstChainId, payload, payable(msg.sender), address(0x0),
bytes(""), msg.value);↪→

In theestimateSendFee() function,adapterParams_ is notneededas it is always set tobytes("")
when using _sendMessage() to transfer OHM tokens.

Remediation

Remove the adapterParams_ parameter and replace it with bytes("").

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 14

Olympus DAO OFT Audit 05 | General Findings

OS-OMP-SUG-03 | Missing Initialization Check

Description

src/policies/CrossChainBridge.sol SOLIDITY

function isTrustedRemote(uint16 srcChainId_, bytes calldata
srcAddress_)↪→

external
view
returns (bool)

{
bytes memory trustedSource = trustedRemoteLookup[srcChainId_];
return (srcAddress_.length == trustedSource.length &&

keccak256(srcAddress_) == keccak256(trustedSource));

The function fails to verify whether srcAddress_ is initialized. Consequently, a function call with
a currently uninitialized source chain ID and an empty source address would return true, contrary to
expectations.

Remediation

Add an initialization check to isTrustedRemote.

Patch

Fixed in #120.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 14

https://github.com/OlympusDAO/bophades/pull/120

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 14

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 14

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-OMP-ADV-00 [high] | Invalid Message Replay Design

	General Findings
	OS-OMP-SUG-00 | Ambiguous Offchain Counter Design
	OS-OMP-SUG-01 | Remove Dead Code
	OS-OMP-SUG-02 | Gas Optimization
	OS-OMP-SUG-03 | Missing Initialization Check

	Appendices
	Vulnerability Rating Scale
	Procedure

